Skip to main content

Location chosen for OYSTER hydrogen project

Published by
Energy Global,


Grimsby, England, has been chosen as the location for an innovative 'marinised' electrolyser project for renewable hydrogen production. The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) funded OYSTER project will develop and demonstrate an electrolyser system designed to be integrated with offshore wind turbines. The project will also investigate the potential of using pipelines to transport hydrogen to shore.

Renewable hydrogen is rapidly emerging as a key tool in the green transformation, providing a clear green path forward for many sectors that would otherwise be difficult to decarbonise, such as heavy industry and heavy transport. Developing offshore hydrogen production, by utilising electrolysers which only require water and renewable electricity to generate renewable hydrogen, further increase this potential by providing a means of transporting low-cost renewable energy from areas of excellent resource to demand centres.

Reaching the EU Hydrogen Strategy target of 40 GW of electrolysers by 2030 is expected to require both onshore and offshore electrolysers. The OYSTER project – being undertaken by a consortium of ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy – will develop and test a MW-scale, fully marinised electrolyser in a shoreside pilot trial, which will be located in Grimsby. The project will also explore the feasibility and potential of combining an offshore wind turbine directly with an electrolyser and transporting renewable hydrogen to shore. The project is 100% funded by the FCH JU, a public private partnership of the European Commission, who awarded the project €5 million in January 2021.

The OYSTER consortium selected Grimsby because of the region's strong connection to renewable energy, in particular offshore wind. Grimsby is home to the O&M hub for Ørsted's UK East Coast operations, including Hornsea One and Hornsea Two, which will be one of the world's largest offshore wind farms when completed in 2022. Both offshore wind farms use Siemens Gamesa turbines and are fitted with blades manufactured in Hull, England. The Humber is also home to Gigastack, which is developing a blueprint for the deployment of industrial-scale renewable hydrogen from offshore wind. The Gigastack project is led by a separate consortium, consisting of ITM Power, Ørsted, Element Energy and Phillips 66 Limited.

Due to the high density of energy intensive industries such as refineries, power stations, steel works and glassworks that flank the banks of the Humber, the region is one of the UK's largest industrial clusters by CO2 emissions; 12.4 Mt CO2/yr. Decarbonisation of the Humber is vital for the UK's legally binding net-zero 2050 target as well as the future economy of the Humber, and renewable hydrogen coupled with offshore wind could play a central role in achieving this ambition.

To realise the potential of offshore hydrogen production, there is a need for compact electrolysis systems that can withstand harsh offshore environments and have minimal maintenance requirements while still meeting cost and performance targets that will allow production of low-cost hydrogen. The OYSTER project will provide a major advance towards this aim.

The OYSTER electrolyser system will be designed to be compact, to allow it to be integrated with a single offshore wind turbine, and to follow the turbine's production profile. Furthermore, the electrolyser system will integrate desalination and water treatment processes, making it possible to use seawater as a feedstock for the electrolysis process.

ITM Power is responsible for the development of the electrolyser system and the electrolyser trials, while Ørsted will lead the offshore deployment analysis, the feasibility study of future physical offshore electrolyser deployments, and support ITM Power in the design of the electrolyser system for marinisation and testing. Siemens Gamesa Renewable Energy and Element Energy are providing technical and project management expertise.

 

 

For more news and technical articles from the global renewable industry, read the latest issue of Energy Global magazine.

Energy Global's Summer 2021 issue

The Summer issue of Energy Global features a varied spectrum of in-depth technical articles detailing recent projects, future projections, and technological advancements in the renewables sector, from companies including CEWEP, Enel Green Power, Turboden S.p.A., Cornwall Insight, and more.

Read the article online at: https://www.energyglobal.com/other-renewables/09092021/location-chosen-for-oyster-hydrogen-project/

You might also like

 
 

Embed article link: (copy the HTML code below):