Skip to main content

National Laboratories teams up with Idaho Power to evaluate use of hydropower in hydrogen generation

Published by , Deputy Editor
Energy Global,

Idaho National Laboratory (INL) and Pacific Northwest National Laboratory (PNNL) have partnered with Idaho Power to evaluate the feasibility and advantages of making hydrogen at existing hydropower plants.

Integrating hydrogen production with hydropower can enhance grid stability through energy storage, reoxygenate water for downstream environmental improvements and support decarbonising energy production in Idaho. The data, models, and analyses developed through this partnership will help determine the viability of hydropower and hydrogen integration, both for Idaho and facilities across the US.

“INL and PNNL will evaluate the coupling of electrolytic hydrogen production technologies with hydropower plants to identify scenarios that could help Idaho Power achieve its goal of providing 100% clean energy by 2045,” said Brett Dumas, Idaho Power’s Director of Environmental Affairs. This approach will help maximise use of the clean energy produced by Idaho Power’s 17 hydroelectric power plants.

Most renewable energy generation technologies face the challenge of varying power output. Hydropower generates more consistently than other renewable energy sources, and adding hydrogen production can increase flexibility by helping balance wind and solar generation. This is especially important during hours of peak electricity use.

Additionally, hydrogen produced using excess electricity from hydropower can be easily converted back into electricity when needed. This option would be especially useful during peak hours when electricity from hydropower may not be readily available, helping to meet energy demand and reduce reliance on non-renewable power generation. This approach levels the energy supply over time, lessening the need for supplemental power generation from outside the hydropower plant.

“By capturing the off-peak energy production as hydrogen, the hydrogen can be re-electrified during peak energy demand,” added INL’s Daniel Wendt, Principal Investigator and Researcher on the project. Storing hydrogen as a fuel could help stabilise the grid and offer a cleaner alternative to fossil-fuel backup power generation. This approach could give electrical system operators greater flexibility to ensure reliable and economical service.

The excess oxygen produced as a byproduct of hydrogen generation could also address water quality issues in the rivers. Reservoirs behind dams may have low levels of dissolved oxygen, particularly during summer and early autumn. Dissolved oxygen in a river is necessary for fish and other aquatic species.

INL and PNNL researchers will evaluate the potential of using excess oxygen generated by the hydrogen generation process to reoxygenate water in rivers with hydropower plants.

INL, PNNL and Idaho Power are taking the first step toward realising these benefits by analysing the?economic and environmental impacts of integrating hydrogen production with hydropower. The project team will develop advanced modelling and analytical methods to explore various deployment scenarios and maximise the benefits associated with hydropower-based hydrogen production.

“To effectively schedule hydrogen production, advanced modelling and optimisation techniques are required to account for both energy shifting opportunities and oxygen needs subject to both system and component-level constraints,” said Di Wu, a Chief Research Engineer and the Technical Lead at PNNL.

Researchers at INL will use a Department of Energy software tool proven to be effective for techno-economic evaluation of other hydrogen production and usage applications. The tool, Hydrogen Analysis (H2A) can perform screening studies of the most promising electrolysis technologies and hydrogen use cases. H2A?allows the user to access all calculations as well as check intermediate results.

PNNL researchers will build on the results of the screening study to model and optimise the hydrogen production system. Through the Hydrogen Energy Storage Evaluation Tool and data analysis, INL and PNNL researchers will determine how to implement the right set of technologies to achieve the best performance.

“While hydropower and hydrogen both offer immense economic and environmental benefits on their own, combining their use in one application offers new opportunities for enhancing grid stability, improving environmental outcomes and creating a cleaner energy economy,” Wendt concluded.



For more news and technical articles from the global renewable industry, read the latest issue of Energy Global magazine.

Energy Global's Spring 2023 issue

The Spring 2023 issue of Energy Global hosts an array of technical articles focusing on offshore wind, solar technology, energy storage, green hydrogen, waste-to-energy, and more. This issue also features a regional report on commodity challenges facing Asia’s energy transition.

Read the article online at:

You might also like


Embed article link: (copy the HTML code below):